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Abstract

A robust and stable numerical algorithm is developed for the hybrid method of particle-in-cell ions and Boltzmann dis-
tribution of electrons. A different approach to estimate the electron density reference and its proper potential reference is
developed to overcome the problems of instability and divergence of previous approaches. The electron density reference is
precisely calculated, the tolerance criterion is well-defined, and convergence is guaranteed by applying bi-section golden
rule. To increase the rate of convergence, an external loop is incorporated with the bi-section golden rule to vary the brack-
ets. The validity of the method is proved by comparing the simulated result with well-known analytical formula. The sim-
ulated sheath potential at a floating wall fit well to the analytic result. The collisionless ion kinetic energy acquired from the
voltage difference between the pre-sheath and ion sheath does not violate the Bohm sheath criterion. For work that focuses
on the plasma process at the ion sheath and not on the generation of plasma, this method saves simulation time by avoid-
ing time consuming particle or kinetic model of electrons. The new approach reproduces the ion density profile at the ion
sheaths region of a plasma with bi-Maxwellian electrons coupling with radio-frequency (RF) signal by introducing two
Boltzmann relations to describe the cold and hot thermal electrons for the first time.
� 2008 Elsevier Inc. All rights reserved.

PACS: 52.65.Ww; 52.65.Rr; 52.50.Qt; 02.70.Bf
1. Introduction

To numerically simulate partially ionized electrical plasma, we can use the particle-in-cell (PIC) approach
[1]. The ions and electrons motion are simulated by an ensemble of PIC particles. To successfully resolve the
electron inertia, it will take a long time to carry out a simulation for real time duration. It is well-known that in
a low-pressure partially ionized plasma at room temperature, the ions are almost never in thermal equilibrium
but the electrons are generally in near-thermal equilibrium [2]. When this partially ionized plasma is saturated,
an ion sheath will generate at the chamber wall and sample stage following by a pre-sheath as depicted in
Fig. 1 [2]. An ion sheath is formed when a partially ionized plasma is bounded by conducting walls. In a
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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Fig. 1. A schematic of the simulation region is depicted. The left hand side of the wall is floated and the right hand side of the wall is
grounded.
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partially ionized plasma, the electrons are more mobile than the room temperature ions. To maintain a bal-
anced ion and electron flux to the walls, a non-neutral positive potential region between the plasma and the
walls will be formed. This positive potential region is defined as ion sheath [2]. A pre-sheath region will exist
between the neutral plasma (bulk region) and non-neutral sheath region to maintain the continuity of ion flux
[2]. Plasma processes such as ion implantation, ion etching, deposition, etc. happen within the ion sheaths [2].
It is not overwhelming to say that ‘‘If you know the ion sheath, you will understand the plasma process.” If the
electrons are in thermal equilibrium, the electron density can be written as
neðxÞ ¼ n0 exp
ð/ðxÞ � /0Þ

T e

� �
ð1Þ
where Te is the electron temperature in V, and /0 is the reference potential at electron density n0. Boltzmann
distribution of electron density can be applied in the absence of electron drifts, the inertial, magnetic force and
frictional force [2]. In conventional RF 13.56 MHz capacitive coupling discharges, the electron drift is zero.
The electron plasma frequency at density 1 � 1015 m�3 is 285 MHz, which is much greater than the RF fre-
quency and the electron inertial can be ignored. The electron density at the wall can be obtained from Boltz-
mann distribution and the lost of electrons to the walls can be estimated by the effusion flux of 1=4neðxÞ�v,
where ne(x) is the electron density at the walls and �v is the thermal velocity �v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8eT e=pme

p
. In plasma immer-

sion ion implantation, a high negative bias voltage, from a few kV to a few tens of kV, is applied to the sub-
strate for a duration of 10–100 ls [3]. The space potential at the bulk plasma under this enormous bias voltage
will nearly equal to zero. Taking the bulk plasma density as a reference point, the reference potential can be set
to zero. Following the procedure of Emmert, the space potential /(x) can be determined through a series of
iteration [4]. By using the Boltzmann relation to describe electron density, the cell length and time step can be
chosen to resolve the ion motion, but not necessarily small enough to resolve the electron motion. The Boltz-
mann relation has been used extensively in simulating plasma immersion ion implantation process with great
success [4–10]. The advantage is that it will save a lot of simulation time. The cell length can be greater than
electron Debye length and time step can be greater than the inverse of electron plasma frequency. The bulk
plasma parameters can be obtained from analytical formula or experimental data. However, in radio-fre-
quency (RF) coupled discharge plasma, the space potential at the bulk plasma will vary with the RF signal
[2]. A lack of electron density reference with the proper potential reference makes it impossible to use Boltz-
mann relation in simulating RF coupled plasma.

Several approaches have been proposed to determine the reference potential /0 at reference electron density
n0. In magnetically confined low-pressure plasma, electron motion was virtually completely confined to a
direction parallel to the contour surface of the magnetic field strength, which in this geometry formed concen-
tric cylinders [11]. Electrons were treated as if they were strictly one dimensional: Axial motion and density
variations were allowed, but electrons could not go from one radial annulus to another [11]. With these
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approximations, Porteous et al. assumed the electrons had a Maxwell–Boltzmann distribution axially so that
the electron density was represented as
neðr; zÞ ¼ nmðrÞ exp
/ðr; zÞ � UðrÞ

T ðrÞ

� �
ð4Þ
where, T(r) is the electron temperature in volt, nm(r) is the maximum electron density along a field line at a
given radial position, U(r) is the maximum value of the self-consistent potential /(r,z) at the radial position
r [11]. In their model, the simulation of solving the Poisson’s equation through successive over relation
(SOR) provided the values of Ne(r), the total of electrons in a finite radial annulus, T(r), and /(r,z), thus
U(r) was obtained. Therefore, nm(r) was calculated as:
nmðrÞ ¼
N eðrÞ

2prDr
R

exp /ðr;zÞ�UðrÞ
T ðrÞ

h i
dz

ð5Þ
where Dr is the width of the finite radial annulus.
However, in a lot of experimental setups, one of the electrodes can be radio-frequency (RF) powered up,

and therefore, U(r) is not necessary self-consistent and determined. Cartwright et al. proposed a different
method [12]. In their method, the reference potential was set to zero and the electron density n0, where /
= 0, will be determined. The Poisson’s equation with the Boltzmann distribution of electrons was solved by
Newton–Raphson iteration [12]. Poisson’s equation was rewritten as
dð/ðxÞÞ ¼ r2/ðxÞ þ e
e0

nPICðxÞ þ qn0 exp
�q/ðxÞ

T

� �� �
ð7Þ
for full Maxwellian–Boltzmann distribution. Iteration will continue until [12],
kdð/ðxÞÞkL2

boundary conditionsþ q=e0k kL2

6 eerror ð8Þ
where boundary conditionsþ q=e0k kL2
was the L2 norm of the charge (including the Boltzmann species

charge) and the boundary conditions, the known quantities in the equation. The tolerance, eerror, was
1 � 10�4 n0 was calculated as
n0 ¼
NBR

V exp �q/ðxÞ
T

h i
dx

ð9Þ
where NB was the total number of Blotzmann electrons within the simulation region. It was shown that proper
choice of n0 determined whether this method was going to converge and converge to the correct solution [12].

Hagelaar et al. independently developed a similar method [13]. The non-linear Poisson’s equation was gen-
erally worked around by taking the first order estimation of electron density at time k + 1 as
nkþ1
e ðxÞ ffi nk

eðxÞ 1þ e
kBT e

ð/kþ1ðxÞ � /kðxÞÞ
� �

ð10Þ
which allowed the Poisson’s equation to be linearized. The spatial integration was done by classical tri-diag-
onal algorithm. When proper time development of a discharge was included, non-physical instabilities of cal-
culation of n0 was observed and a stabilization term was inserted [13],
nkþ1
0 ¼ 1

p
Nk

e 1� qDt
p

� �
þ SizV Dt þ f pnk

0 � Nk
e

� �� �
ð11Þ
q was the electron flux to the walls, SizVDt was the number of real electrons created in the volume V during
one time step, Nk

e was the total number of electrons in the volume, f was an arbitrary coefficient, and p was
defined as:
p ¼
Z Z Z

v
exp

e/
kBT e

� �
dV ð12Þ
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Critical damping was obtained when f ¼ f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
qDt=p

p
[13].

In these previous works, the reference potential of the Boltzmann distribution were either set to zero [12,13]
or taking as the maximum potential value [11]. The reference electron density was estimated by direct New-
ton–Raphson method [12]. However, in plasma coupling with RF signal, the maximum potential value will
vary and not necessary self-consistent. This limited the general application of Boltzmann distribution of elec-
trons in space. Moreover, it shown that proper choice of initial reference density is essential for convergence
[12] and a stabilization term was needed [13]. In this paper, a different approach to estimate the electron den-
sity reference and its proper potential reference will be developed to overcome the limitation of previous
approaches. In the new approach, the electron reference density nref(t) is precisely calculated. Its reference
potential /ref(t) will be determined by bi-section golden rule. We will show that this approach is more robust
since nref(t) is precisely calculated, the tolerance criteria is well-defined, and convergence is guaranteed by
applying bi-section golden rule. It is well-known in computational physics that bi-section method has a
100% successful rate in either finding a root or a minimum, i.e., the bracketed interval will decrease in size
with each iteration [14]. With a well-defined tolerance criterion, the method becomes robust and stable. To
increase the rate of convergence, an external loop is incorporated with the bi-section golden rule to vary
the brackets.

Plasmas can show non-Maxwellian electron distributions [15]. In particular, at low-pressure (30 m Torr)
RF coupled discharge plasma, it is common that the electron energy distribution function (EEDF) is bi-Max-
wellian [15]. A majority of cold thermal electrons of Te = 0.50 V with density of 4.2 � 1015 m�3 mixes with a
hot thermal electrons of Te = 3.4 V with density of 2.0 � 1014 m�3 [15]. Two Boltzmann distributions with dif-
ferent electron’s temperatures and densities were analytically used to determine the floating potential of a bi-
Maxwellian RF plasma and to solve the Tonks–Langmuir problem for a bi-Maxwellian plasma [16,17]. In the
theoretical analysis, only averaged values of plasma potentials were calculated [17]. In situ potential variation
with time has not been simulated for bi-Maxwellain electrons [17]. With the advantages of robustness and
guaranteed convergence of the proposed approach, multiple Maxwellian electron distributions can be incor-
porated with it. The ion sheaths of a partially ionized Argon plasma contained bi-Maxwellian electrons [15] is
simulated for the first time by introducing two Boltzmann relations to describe the cold and hot thermal
electrons.

The paper is organized as follows. The model will be described in the next section. The model will then be
validated by comparing the simulated results with a well-known analytical formula. A plasma with bi-Max-
wellian electrons will be simulated by introducing two Boltzmann relations of electron density in the new
approach. Finally this paper will be discussed and concluded.
2. Model

An uniform plasma is bounded by two infinite long electrodes as illustrated in Fig. 1. At time t = 0, the
total number of electrons Ne(0) is calculated by the average electron density nref(0) times the length between
the two walls L. In one dimension, Ne has units of m�2. The electrons have a larger drifting velocity and are
therefore lost to the walls much faster than the ions. At each time step, the number of electrons lost to the
walls are obtained by electron flux toward the walls times the time step dt. The electron flux, for a full Boltz-
mann–Maxwellian distribution [12] is written as 1=4neðxÞ�v, where ne(x) is the electron density at the walls and �v
is the thermal velocity �v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8eT e=pme

p
[2]. For simplicity, full Boltzmann–Maxwellian distribution is used

here. Other types of Boltzmann–Maxwellian distribution can be applied in the future [12]. At each time step,
we obtained a new total number of electrons Ne(t), i.e.,
N eðtÞ ¼ N eðt � dtÞ � �mdt
Z

walls

1

4
neðxÞdx ð13Þ
and a new electron density reference nref(t) = Ne(t)/L. nref(t) is unique at each time step and is independent of
any iteration technique. In the proposed model, nref(t) will be used to determine the reference potential in the
Boltzmann relation. Since nref(t) is unique, it will provide a solid indicator of convergence when finding the
reference potential. By using nref(t), convergence of the proposed model is unambiguous and guaranteed.
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The reference potential /ref(t) of this unique nref(t) will be calculated. The electron densities ne(x) at different
position x were obtained by the Boltzmann relation,
neðxÞ ¼ nrefðtÞ exp
ð/ðxÞ � /refðtÞÞ

T e

� �
ð14Þ
using nref(t) from (13) with an initial guess of /ref(t). However, the value of /ref(t) is not necessary correct. To
verify /ref(t), we re-calculate the electron density from ne(x). We defined this re-calculated electron density as
ne,cal. In one dimension coordinate, ne,cal is calculated as
ne;cal ¼
Dx
L

neð0Þ
2
þ
Xl�1

i¼1

neðiDxÞ þ neðLÞ
2

" #
ð15Þ
where Dx is the cell length. At the walls, ne(0) for left hand wall and ne(L) for right hand wall, only half
the cell is in the simulation region, therefore we take half of the value calculated in Eq. (15). ne,cal is dif-
ferent from the unique nref(t) because ne(x) is calculated with an incorrect /ref(t). The potential /(x) is
solved by Poisson equation. The Poisson equation after the substitution of the Boltzmann relation, Eq.
(14), becomes
r2/ðxÞ ¼ � e
e0

QniðxÞ � nrefðtÞ exp
ð/ðxÞ � /refðtÞÞ

T e

� �� �
ð16Þ
where, Q is the charge state of the ions, e is the elementary charge, e0 is the electric constant, and ni(x) is the ion
density. ni(x) is obtained from the PIC particle ensemble of ions. Following the procedure of Emmert [4], by
iteration and relaxation, the space potential /(x) is obtained [4,5]. The electron Boltzmann distribution can be
expanded with the reference potential as
nðxÞ ¼ nrefðtÞ exp
/ðxÞ � /refðtÞ

T e

� �
¼ nrefðtÞ exp

/ðxÞ �WðxÞ þWðxÞ � /refðtÞ
T e

� �

ffi nrefðtÞ 1þ /ðxÞ �WðxÞ
T e

� �
exp

WðxÞ � /refðtÞ
T e

� �
ð17Þ
The iteration stopped when the relative error of each node
/newðxÞ � /oldðxÞ
/oldðxÞ

				
				 6 1� 10�6: ð18Þ
After solving /(x), ne(x) is calculated from Eq. (14) and ne,cal is calculated from Eq. (15). If the relative error

between ne,cal and nref(t),
ne;cal�nref

1þnref

			 			, is small then /ref(t) is a proper potential reference of nref(t). If not, /ref(t) is

re-estimated by the bi-section golden rule [14]. In bi-section golden rule, /ref(t) is bracketed by two initial val-
ues /a and /b. ne,cal at these two values are calculated accordingly by Eq. (15). The golden rule of bi-section

shrinks the bracket down until a good estimation is obtained.
ne;cal�nref

1þnref

			 			 is the indicator in the bi-section algo-

rithm. The procedure for finding the correct reference potential is depicted in Flow chart 1. After the appro-
priate reference potential /ref(t) is estimated, the electron density at different positions are calculated once
again by the Boltzmann relation, Eq. (14). The electrons lost to the walls are then deducted from the total
number of electrons Ne(t) and a new average electron density nref(t + dt) is calculated for the next time step.
The whole procedure is repeated until the end of the simulation.

A big enough bracket is required in bi-section procedure such that the correct answer fall within it. Unfor-
tunately, a large bracket will slow down the speed of searching the answer. To speed up the process and secur-
ing a correct answer of /ref(t), an extra loop was added on top of the standard adjustment of the bracket as
depicted in Flow chart 1. Supposed we start our iteration at /start but the correct answer is +10DV away from
it. After the first bi-section adjustment within the inner loop, it will return /new = /start + DV. Of course the
outer loop criteria will not be satisfied and the iteration will be continued until /new ffi /start + 10DV. The con-
vergence of the procedure greatly depends on the criteria of the inner bi-section loop. Since nref(t) is unambig-



Flow chart 1. The modified procedures of estimating the referencing potential by bi-section golden rule is depicted. The convergence to the
correct reference potential is guaranteed.
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uous and well-defined, convergence is guaranteed in the modified method with
ne;cal�nref

1þnref

			 			 as an indicator. The
proper choose of DV and the performance of the procedure will be discussed.

3. Validating the approach

We prove the validity of the method by comparing the simulated result with well-known analytical formula.
When a partially ionized plasma is touching a floating wall, an ion sheath forms between the wall and the bulk
plasma. For simplicity, the ions were assumed to be non-collisional. By balancing the ion and electron flux to
the wall and setting the potential at the sheath edge as zero, the floating potential at the wall can be analyt-
ically calculated by the equation [2],
Uw ¼ �T e ln

ffiffiffiffiffiffiffiffiffiffiffi
M

2pme

r� �
ð19Þ
where Te is the electron temperature in volt, M is the ion mass, and me is the electron rest mass. An Argon
plasma of atomic mass 40 amu and an electron temperature of 7 V will give, according to (19), a potential dif-
ference between the floating wall potential and ion sheath edge of 32.8 V. An one dimension simulation in rect-
angular coordinate is conducted as close to reality as possible. The left hand side wall at x = 0.0 representing
the sample stage electrode is floating, i.e., charges will accumulate. The right hand side wall representing the
chamber wall is usually grounded and the potential is set at zero. An uniform partially ionized Argon plasma
of 1 � 1015 m�3 was initially placed between the two metal walls as depicted in Fig. 1. The ions were simulated
by Particle-in-cell method [1]. The length between the two walls was 0.12 m. The region was divided into smal-
ler cells of length = 0.5 mm. 100 PIC particles were placed in each cell giving a total of 12,000 PIC particles to
simulate the ion motion. The time step was 1.0 � 10�10 s. The electrons were in thermal equilibrium with a
temperature of 7 V. The surface voltage of the left hand side floating wall was determined by Gauss’ law
[18]. According to Gauss’s law, the surface voltage of the floating wall at the next time step was calculated,
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V 0ðt þ dtÞ ¼ V 1ðtÞ þ
rcðtÞdx

e0

ð20Þ
where the surface charge density rc(t) was updated by the ion and electron fluxes, dx was the cell length, and
V1(t) was the potential of the node next to the floating wall. The surface voltage V0(t + dt) was substituted into
Eq. (14) to estimate an electron density at the wall. Following the procedures described in Flow chart 1, a cor-
rect potential reference /ref(t + dt) was obtained.

An ion sheath was formed shortly after the start of the simulation. After 3 ls of simulation, the ion sheath
was established. The ion and electron densities and the space potential distributions at 5 ls were plotted in
Fig. 2 near the floating wall. The ion sheath region was clearly defined between x = 0 and x = 0.8 cm, and
the pre-sheath region between x = 0.8 cm and 3.0 cm was also observed. The region x > =3.0 cm was roughly
defined as the bulk plasma region. In an ideal situation starting with an uniform plasma of density
1 � 1015 m�3, the bulk plasma region shall have a density of 1 � 1015 m�3. The space potential at the bulk
plasma was not zero because we had set the grounded right hand side wall as the reference potential of zero.
The potential of the floating wall (left hand side wall) showed zero because the ion and electron fluxes were
balanced. At the sheath edge shown in Fig. 2, the potential difference was approximately 33.5 V. Therefore,
the numerically estimated potential difference between the sheath edge and floating wall fitted well with the
analytical answer of 32.8 V obtained by Eq. (19). According to Bohm sheath criterion [2], the ions must gain
a kinetic energy greater than or equal to eTe/2, which equals 7 eV/2 = 3.5 eV in this case. The space potential
at the bulk plasma was 39.27 V given the potential drop within the pre-sheath 39.3–33.5 = 5.8 V > 3.5 V. A
collisionless Ar+ ion will gain a kinetic energy of 5.8 eV when accelerated through the pre-sheath region.
Therefore, the simulation did not violate the Bohm sheath criterion. For simplicity, we did not include the
plasma generation in the simulation and therefore, the pre-sheath will continue extend into the bulk plasma
until it hits the pre-sheath of the right hand sided wall. The plasma potential at the bulk region at x = 6 cm
continued to gradually increased until the two pre-sheaths touched each other [19]. The plasma potential at the
bulk region was plotted against run time in Fig. 3. As depicted in Fig. 3, it was shown that the pre-sheaths
joined together at around 13 ls. When the two pre-sheaths joined together, the plasma starts to decay. The
positive ion (space charge) density and electron density at 3, 5, 7, 10, and 15 ls were plotted in Fig. 4a. Accord-
ing to Child’s law, the sheath edge should increase slightly as the plasma density is decreasing at constant wall
potential and electron temperature. These slightly changes of the sheath edge defined as ion density = electron
density was hardly observed by naked eyes. As depicted in Fig. 4b, the sheath edge did not vary much with
time and almost fixed at x = 0.85 cm. The plasma density at the sheath edge dropped from 5.8 � 1014 m�3 at
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Fig. 3. The space potential at the bulk plasma at x = 6 cm is plotted against simulation time.

Fig. 4a. The ion and electron densities at different simulation time at the left hand side wall are depicted.
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3 ls to 3.34 � 1014 m�3 at 15 ls [19]. Grid heating was observed after 7 ls [20–22]. The grid heating was get-
ting worse after the two pre-sheaths joined together at 13 ls. As depicted in Fig. 3, the potential at the bulk
plasma did not tremble with the grid heating. Therefore, the grid heating effect is acceptable in the simulation.
The grid heating can be suppressed by jiggling the computation mesh [23]. The sheath edge data were summa-
rized in Table 1. It showed that the ion kinetic energy acquired from the pre-sheaths region were always
greater than 3.5 eV. It concluded that during the transient state of the dying plasma the kinetic energy
acquired by the collisionless ions did not violate the Bohm sheath criterion. The voltage drop across the
pre-sheath region were much greater than Te/2, which equaled 7 V/2 = 3.5 V in this case. In an review article
of Bohm criterion and sheath formation written by K–U Riemann [19], Bohm’s criterion referred to the sheath
edge, which was uniquely defined only in the asymptotic limit kD/L ? 0, where kD is the electron debye length
and L is the all other characterize lengths of the plasma, e.g., ion mean free path. In the case of non-collision
ions, zero ionization rate, and hot electrons, i.e., large kD, the Bohm criterion can be over-satisfied. This is
essentially a matter of stationary; only in stationary situations the ion velocity equals the Bohm velocity on



Fig. 4b. An expanded view of (a), the ion and electron densities at different simulation times at the sheath region are depicted.

Table 1
Data at different simulation time of the transient state of partially ionized Argon plasma

Time (ls) Potential at bulk
(V)

Potential at ion sheath edge
(V)

Potential between bulk and ion sheath
edge (V)

Electron/Ion density
(1014 m�3)

3 38.9 35.1 3.8 5.80
5 39.3 33.5 5.8 4.41
7 39.5 32.9 6.6 3.91
10 39.6 32.5 7.1 3.58
15 38.6 32.1 6.5 3.34
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the sheath edge. Albeit the generation of plasma has not been considered, valuable information will be
achieved during the transient state before the joining of the pre-sheaths, for example, the coupling between
the plasma and external matching network [24], and micro-arcing effect at the ground chamber wall [25]. In
the next section, we will extend our method to simulate plasma with bi-Maxwellian electrons.

4. Multiple Boltzmann electrons

In this section, we applied the new developed method to simulate a plasma with bi-Maxwellian electrons.
For simplicity, the ions are collisionless and plasma is not generated. Before we can introduce two Boltzmann
relations to describe them, we have to show that there is no direct contact between these two plasma species.
Electrons are mainly scattered by each other through coulomb elastic collisions [2]. The collision frequency for
the cumulative effect of many collisions to produce a 90 degree deflection can be written down as [2],
m90 ¼ ngr90V R ð21Þ

where ng is the target particle density, r90 is the scattering coefficient and VR = jV1 � V2j is the relative velocity
in centre of mass system. r90 for electron–electron scattering can be written down as
r90 ¼
8e4

p3e2
0m2

eV 4
R

ln K ð22Þ
Typically ln K = 10 [2]. The average speeds of the cold (0.5 V) and hot (3.4 V) electrons are 4.738 � 107 and
1.235�108 cm s�1, respectively. The collision frequency of the cold electrons by the hot electrons is
1.4221�104 Hz and the collision frequency of the hot electrons by the cold electrons is 2.4887�105 Hz. They
are very low when compared to the effective frequency for momentum transfer between electrons and argon
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neutrals [26]. At 30 m Torr, the collision frequency between electrons and background Argon gas in the range
between 1 and 10 V is 5.3 � 109 � 30 � 10�3 = 1.59 � 108 Hz [26]. In other words, the electrons, no matter
whether they are cold or hot, will not reach thermal equilibrium by scattering with each other but they will
separately reach equilibrium by scattering between neutrals, for example argon atoms. There will be interac-
tion/exchange between the hot and cold electrons through the Ar intermediates. However, the main lost of
these electrons are due to diffusion to the sample stage and chamber wall. The create/destroy rates of electrons
due to interaction through Ar intermediates can be ignored. Therefore, it is theoretically correct to treat the
cold and hot electrons as two different plasma species and use two Boltzmann relations to describe them. After
substituting the two Boltzmann relations into the Poisson equation, it becomes
Flow c
golden
r2/ðxÞ ¼ � e
e0

QniðxÞ � nhot
ref ðtÞ exp

e /ðxÞ � /hot
e

� �
T hot

e

 !
� ncold

ref ðtÞ exp
e /ðxÞ � /cold

e

� �
T cold

e

 !" #
ð23Þ
Eq. (23) can be expanded by the Emmert procedure [4] except in this case, we have two referencing potentials
to be estimated. Bi-section golden rules will be separately applied to these two electron species until the ref-
erence potentials have converged and relaxed as depicted in Flow chart 2. As shown in Flow chart 2, separated
golden rules are applied to estimate the referencing potentials of hot and cold electrons. However, a new re-
laxed space potential (at each node) will no doubt change the electron densities for both species. To make sure
that the hot and cold reference potentials have converged, the exit criteria are checked together at the end. In
the simulation, the length between the two walls was 0.12 m. An RF (13.56 MHz) signal of amplitude 150 V
was applied to the right hand side wall and the left hand side wall was grounded. The cell length was 0.5 mm
and the time step was one RF cycle divided by 200, which equaled to 3.7 � 10�10 s. After 2 ls of simulation,
two ion sheaths were established at the walls. The potential variations within 1 RF cycle at 5 ls were plotted in
Fig. 5a. As depicted in Fig. 5a, the potential at the left hand side wall was always zero because it was
hart 2. The procedures of estimating the referencing potentials of the two Boltzmann distributions by the modified bi-section
rule is depicted.



Fig. 5a. The simulated space potential distributions of the RF cycle at phase p/2, p, 1.5p, and 2p at 5 ls are depicted. The applied voltage
is given by V(x = 0.12 m)=150 � sin (xt). The space potential at the bulk plasma never drops below zero.
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grounded. The right hand side wall potential varied with the RF signal. It was maximum of +150 V at phase
of p/2, at minimum of �150 V at phase of 1.5p, and zero at phases of p and 2p. The space potential in the bulk
plasma varied with the RF cycle but would never drop below zero voltage because the total positive space
charges were bigger than the negative space charges. It is because the electrons lost to the walls much faster
than the ions. The ion and electron densities within one RF cycle at 5 ls were plotted in Fig. 5b. The density
profiles at both walls were enlarged. The heavy ions only responded to the average electric field and therefore
did not change in one RF cycle at all. On the other hand, the light electrons responded instantaneously with
electric field. At the phase of p/2, the right hand side wall had a potential of +150 V and the ion sheath was
nearly vanished. On the other hand, the left hand side wall has a relatively speaking negative potential with
respect to the bulk plasma and therefore, a thick ion sheath was formed. At the phase of 1.5p, the right hand
Fig. 5b. The simulated ion and electron densities distributions of the RF cycle at phase p/2, p, 1.5p, and 2p at 5 ls are depicted. The
sheath regions at the left and right hand side wall are enlarged. The heavy ions density in solid thick line did not response simultaneously
with the RF signal.
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side wall had a potential of �150 V and therefore, a thick ion sheath was created. In contrast, the ion sheath
was nearly vanished on the left hand side wall. The ion density profile did not decay exponentially in the ion
sheath region of a plasma with bi-Maxwellian electrons as depicted in Fig. 5b. An elongated tail of low ion
density was extended from the sheath edge to the wall. This extended tail was generated by the small popu-
lation of hot electrons. Presumably, the ion sheath, especially in the negative RF cycle, forms a potential bar-
rier for the electrons. The hot electrons with a higher mean speed can penetrate deeper into the ion sheath.
After counterbalance with the ion flux, the ion density profile shows non-exponential profile. A discharge
emission spectrum experimentally revealed a non-exponential of light intensity within the ion sheath region
at 90 m Torr RF discharged Ar plasma [27]. It shows that the simulation of the transient state of the partially
ionized plasma with bi-Maxwellian electrons has reproduced the main feature, measured by emission spectros-
copy, in the ion sheath regions coupling with RF signal.

5. Discussion

5.1. Time step

Two time steps were used in the simulations. A time step of 1.0 � 10�10 s was applied to simulate the Argon
plasma with a Maxwellian electron of temperature 7 V. As depicted in Fig. 3, the maximum plasma potential
was about 40 V during the simulation. Therefore, the maximum kinetic energy of an Argon ion acquired from
the ion sheath is 40 eV. A 40 eV Argon ion will have a velocity of 1.38 � 104 ms�1. In 1.0 � 10�10 s, the Argon
ion can travel a distance of 1.36 � 10�6 m that is much less than the cell length of 0.5 mm. A time step of
1.0 � 10�10 s is accurate to simulate this plasma system. By describing the electron density through Boltzmann
relation, the cell length and time step are not necessarily small enough to resolve the electron motion.

In the Argon plasma with bi-Maxwellian electrons, one of the electrodes was powered by a RF signal of
amplitude 150 V. The time step was one RF cycle, 7.37 � 10�8 s, divided by 200, which equaled to
3.7 � 10�10 s. The plasma potential will vary with the RF signal. As depicted in Fig. 5a, the maximum plasma
potential is around 150 V and the maximum kinetic energy an Argon ion can be acquired from the ion sheath
is 150 eV. A 150 eV Argon ion will have a velocity of 2.68 � 104 ms�1. In 3.7 � 10�10 s, the Argon ion can
travel a distance of 1.0 � 10�5 m that is 50 times less than the cell length of 0.5 mm. Therefore, a time step
of 3.7 � 10�10 s is accurate enough to simulate Argon plasma with bi-Maxwellian electrons.

5.2. Bi-section bracket

In a time step, intensive computational steps will be conducted within the procedure of seeking the correct
reference potential through the bi-section golden rule. As mentioned in section model, a big enough bracket
was required in bi-section procedure such that the correct answer fall within it. However, a large bracket will
take a long time to sink the bracket to the correct answer. An extra loop was added on top of the standard
adjustment of the bracket to speed up the searching. In this section, the size of the bracket DV in Flow charts 1
and 2 will be systematically investigated on the efficiency of searching the correct reference potential /ref(t) at
time t.

An Argon plasma with bi-Maxwellian electrons, a majority of cold thermal electrons of Te = 0.50 V with
density of 4.2 � 1015 m�3 and a hot thermal electrons of Te = 3.4 V with density of 2.0 � 1014 m�3, is used in
the investigation. The Argon plasma is bounded by two electrodes separated by 0.12 m. The cell size is 0.5 mm
and the time step is fixed at 3.7 � 10�10 s. At each time step, the simulation will go through the procedure of
seeking correct reference potentials for the hot and cold electron species as depicted in Flow chart 2. The pro-
cedures depicted in Flow chart 2 consisted of several while loops nesting together. We define the outmost loop
of setting the bracket as ‘‘ref. loop”. When bi-section golden rule is applied, it will take several steps/loops
before the bracket will be reduced smaller than the existing criteria and jumped out the golden rule. We define
the step taken within the bi-section golden rule section as ‘‘golden loop”. The core activity within the golden
loop is to iterate the potential of each node by applying successive over relation (SOR). We define a round of
iterating the total of 241 nodes as an ‘‘iterate loop”. It usually takes many iterate loops before the potential of
each single node to be relaxed. The efficiency of the procedure depicted in Flow chart 2 is analyzed by plotting
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the number of ref. loop, golden loop, and iterate loop against the run time. Three DV of 1 V, 3 V, and 5 V are
used in the analysis. Two boundary conditions will be applied, i.e., the electrodes are grounded, and one of the
electrodes is RF powered with an amplitude of 150 V.

Fig. 6 plotted the number of ref. loop (a), golden loop (b), and iterate loop (c) against the simulation time
when the electrodes were grounded. As shown in Fig. 6a, after the established of ion sheaths at the electrodes,
the program spent around 1–2 ref. loops to obtain the reference potentials. There is no significant difference
Fig. 6a. The number of ref. loop was plotted against run time when DV = 1 V, 3 V, and 5 V. The electrodes were grounded.
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between DV = 1 V, 3 V, and 5 V. However, the simulation stopped at 4.8 � 10�6 s when DV = 5 V. The tol-

erance
ne;cal�nref

1þnref

			 			 went to infinity. During the inner golden bi-section loop for the cold electrons of Flow chart

2, the Boltzmann term of the hot electron species will be re-calculated by Eq. (23). With a large DV of 5 V, the
Boltzmann term became unreasonable large and caused the tolerance went to infinity. Fig. 6b depicted the
number of golden loop against simulation time. After the established of ion sheaths, the program spent in
Fig. 6b. The number of golden loop was plotted against run time when DV = 1 V, 3 V, and 5 V. The electrodes were grounded.
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average 20 golden loops when DV = 1 V, 24 loops when DV = 3 V, and 28 loops when DV = 5 V. It is normal
for bi-section golden rule because it takes more turns to sink down a larger bracket. Fig. 6c depicted the num-
ber of iterate loop against simulation time. As shown in Fig. 6c, there is significant difference of applying a
larger DV. After the established of ion sheaths, the program spent in average 300 loops when DV = 1 V,
684 loops when DV = 3 V, and 2170 loops when DV = 5 V. The increase in computational workload is
non-linear because the Poisson’s equation with the Boltzmann distribution term is non-linear. The non-linear
Fig. 6c. The number of iterate loop was plotted against run time when DV = 1 V, 3 V, and 5 V. The electrodes were grounded.
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Poisson’s equation with the Boltzmann distribution term was expanded by Emmert method of Eq. (15). In
golden bi-section rule, the reference potential bounced forward and backward within the bracket. The expo-
nential terms of Eq. (16) became very large and it took more iterations to successive over relax the potential. A
smaller DV speeded up the simulation.

Fig. 7 plotted the number of ref. loop (a), golden loop (b), and iterate loop (c) against the run time when
one of the electrodes was powered by an RF (13.56 MHz) signal of amplitude 150 V. The plasma potential was
Fig. 7a. The number of ref. loop was plotted against run time when DV = 1 V, 3 V, and 5 V. One of the electrodes were RF (13.56 MHz)
powered of amplitude 150 V.
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varied with the RF signal and the number of loops spent by the program greatly depended on the phase of the
RF signal. When the RF signal was on its maximum or minimum, i.e., 0.5p and 1.5p in Fig. 5, the program
spent less iterations to successive over relax the potentials because the plasma potential varied a little with time
step. On the other hand, when the RF signal was 1p and 2p in Fig. 5, the program spent a lot of iterations to
successive over relax the potentials because the plasma potential varied a great amount with time step. There-
Fig. 7b. The number of golden loop was plotted against run time when DV = 1 V, 3 V, and 5 V. One of the electrodes were RF
(13.56 MHz) powered of amplitude 150 V.
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fore, the number of loops spent by the program cycled with the simulation time as depicted in Fig. 7. When the
ion sheaths were established, the program spent less loops on iterating the potentials. A larger DV in general
caused more loops to be spent on iteration. The simulation stopped at 2.9 � 10�6 s when DV = 5 V because

the tolerance
ne;cal�nref

1þnref

			 			 went to infinity.
Fig. 7c. The number of iterate loop was plotted against run time when DV = 1 V, 3 V, and 5 V. One of the electrodes were RF
(13.56 MHz) powered of amplitude 150 V.
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6. Conclusion

A robust and stable numerical algorithm was developed for the hybrid method of particle-in-cell ions and
Boltzmann distribution of electrons. A different approach to estimate the electron density reference and its
proper potential reference was developed to overcome the problems of instability and divergence of previous
approaches. The electron density reference was precisely calculated, the tolerance criterion was well-defined,
and convergence was guaranteed by applying bi-section golden rule. To increase the rate of convergence, an
external loop was incorporated with the bi-section golden rule to vary the brackets. The approach was proved
by comparing the simulated result with well-known analytical formula. The simulated sheath potential at a
floating wall was close to the analytical result. The collisionless ion kinetic energy acquired from the voltage
difference between the pre-sheath and ion sheath did not violate the Bohm sheath criterion. For work that
focuses on the plasma process at the ion sheath and not on the generation of plasma, this method saves a
lot of simulation time by avoiding time consuming particle or kinetic model of electrons.

An external loop was introduced to vary the bracket incorporating with the bi-section golden rule in Flow
chart 1. This external loop only worked with a well-defined tolerance criterion. It showed that a small bracket
size DV speeded up the simulation without decreasing the accuracy. The accuracy of the simulation depended
mainly on the time step and cell size. A small bracket size was also necessary in simulating plasma with multi-
ple Boltzmann distributions electrons. It showed that a large DV of 5 V caused the tolerance went to infinity. A
small DV will stabilize the iteration process.

This work clearly showed that Boltzmann relation can be applied to simulate the transient states of a par-
tially ionized plasma with an expanding sheath towards an uniform bulk plasma. In a review article on sheath
formation [19], in the asymptotic limit kD/L ? 0, a transition layer is needed between the pre-sheath and
sheath region. The used of Boltzmann relation in the simulation can provide important information of this
transition layer in the ideal/close-to-ideal case.

The aim of the paper is to demonstrate and validate the new approach. For simplicity, the ions were col-
lisionless and plasma was not generated, i.e., only transient state of ion sheaths were simulated. The advantage
of simulating a transient state is that result can be generated in a short period of time. MCC–PIC model will be
included to simulate the collisional ions and generation of plasma [28]. The PIC electrons will be incorporated
with Boltzmann electrons for generation of plasma [12].

We have used the new approach to simulate the ion sheaths locations of a plasma with bi-Maxwellian elec-
trons within an RF cycle by introducing two Boltzmann relations to describe the cold and hot thermal elec-
trons in an RF coupled partially ionized Argon plasma for the first time. The numerical method was
successfully applied to simulate a semi-transparent conducting mesh electrode for plasma immersion ion
implantation [29], enhancement of micro-arcing at a grounded chamber wall in a radio-frequency capacitive
discharged plasma [25], and RF coupling of an partially ionized plasma with an auto-matching network [24].
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